In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:
Muon-catalyzed fusion (abbreviated as μCF or MCF) is a process allowing nuclear fusion to take place at temperatures significantly lower than the temperatures required for thermonuclear fusion, even at room temperature or lower. It is one of the few known ways of catalyzing nuclear fusion reactions.
Muons are unstable subatomic particles which are similar to electrons but 207 times more massive. If a muon replaces one of the electrons in a hydrogen molecule, the nuclei are consequently drawn 196 times closer than in a normal molecule, due to the reduced mass being 196 times the mass of an electron. When the nuclei move closer together, the fusion probability increases, to the point where a significant number of fusion events can happen at room temperature.
Methods for obtaining muons, however, require far more energy than can be produced by the resulting fusion reactions. Muons decay rapidly due to their unstable nature and cannot be usefully stored.
To create useful room-temperature muon-catalyzed fusion, reactors would need a cheap, efficient muon source and/or a way for each individual muon to catalyze many more fusion reactions. Laser-driven muon sources are one possible approach.